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PREFACE

This Memorandun is part of RAND's continuing effort

in the application of network flow theory. It provides

a graphic description of the out-of-kilter algorithm,

together with useful computational methods. Network

flow problems arise in the solution of transportation

and scheduling problems. This work is directed toward

the user and prograinmer of network-solving algorithms.

Portions of this material were presented at the

SHARE XXIX meeting, August 1967.
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SUMMARY

Network flow problems arise in the solution of trans-

portation and scheduling problems. Divided into four

substantially independent sections, this Memorandum:

1) reviews the types of problems that are representable

as capacitated network problems; 2) explains (with

diagrams) the out-of-kilter algorithm and techniques for

implementing it on a comput r; 3) describes modification

of the algorithm to a two-phase algorithm; 4) presents

a method for labeling the nodes by means of a scan list.

Tentative conclusions are that the two-phase algorithm

is undesirable, and that the labeling procedure shortens

computer time at the cost of using more memory.

•, -m mm mm m mm mm m •
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SYMBOLS

The subscript notation is equivalent to parentheses

or brackets; e.g., Sj S(J) ÷ S[j3.

a ij Incidence matrix.

b Node flow.

cj Unit cost.

z j Reduced cost.

dj iTotal cost, as a function of flow, in one arc.

ej Cycle indicators.

gj Scrambled source node arc list.

hj Scrambled sink node arc list.

i Node subscript.

J Arc subscript.

J Target arc.

k Node subscript.

kj Kilter number.

K Total kilter number.

tj Lower capacity.

Li Node label.

m Number of nodes.

n Number of arcs.

p Position of scanner.
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qj Infeasibility number.

Q Total Infeasibility.

R Sran list.

refnode Reference node.

a Length of scan list.

S Source node.

T Sink node.

u Upper capacity.
Ui Source node reference list.

V Sink node reference list.

i
xj Amount of flow.

yj Alternate designation of flow.

ly iSpecial reduced cost.

4 Objective value.

A J Dual slack variable.

ff i Node price. pi(i) is used in ALGOL programs.

Pi Temporiry symbol for constructing thi gj list.

?Temporary symbol for constructing the U list.

S1 Temporary symbol for constructing the Vi list.



. 1 .NTRODUCTION

THE CAPACITATED NETWORK PROBLEM

A network is madc up of a set of nodes together with

a set of directed arcs. Figure I is an example cf a net-

work with five nodes and eight arcs. The nodes are desig-

nated by the letters A, B, C, D, and E, and directed arcs

A B 2 C

3

8 7

5

6

D E

Fig. 1--Example Network

are numbered 1, 2, 3, 4, 5, 6, 7, and 8. An alternative

way of designating these arcs is by ordered pairs of nodes;

hence, arc 1 is also arc (A,B), arc 2 is arc (B,C), arc 3

is arc (C,B), etc. The first node of the ordered pair,

called the source node, is the node from which the indi-

cated arrow is directed; the second node, called the
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sink node, is the node toward which the arrow is directed.

Note that arcs 5 and 6 are both designated as arc (DE),

so that a subscript on the ordered pair of nodes must be

used to distinguish between non-unique ordered pairs.

Hence, arc 5 is arc (D,E) 1 and arc 6 is arc (D,E) 2 . Also,

the set of arcs is non-exhaustive; e.g., there is no irc

(C,D) or (D,C) in Fig. 1.

The capacitated network problem consists of a network,

together with the following four quantities for each arc j:

1) c j: The cost of sending one unit of flow along

arc j from its source node to its sink node.

2) u.,: The upper capacity of arc J.

3) tj: The lower capacity of arc j.

4) x The nominal flow along arc J.

Denoting the number of nodes in the network as m and

the number of arcs as n, the nominal flows, xO, determine

the node constraints

n

iaij xj bi i- ,2,...,m.
Ji-

Here
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(+1 if node i is the source node
for arc J;

a - -1 if node i is the sink node
for arc j;

0 otherwise.

And bi is found by evaluating

n
b

b - ij xjil,..
J-1

Note that each column of the (a ij) matrix has only two

non-zero entries: +1 and -1. Since

m n m

i-iji~l jai iml

at least one node constraint i- adundant. Specifying

a nominal flow, x uniquely determines b1 ,b2 ... b

such that b + b2 +...+ b - 0. A nominal solution is

any vector (xl,x 2 .... ,xn) that satisfies

n

aij x. b. i-,2,...,m
j-1
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A feasible solution of the capacitated network problem

is any vector (xl,x 2 ,...,xn), such that

n
I) L i j - bi i ,2,... ,

i-i

2) x. Ž 4. j-l,2,...,n

3) xj n u. J-l,2,...,n

that is, a feasible solution is a nominal solution that

satisfies t i - !j U u for all arcs j. If there is at

least one feasible solution to the problem, then an optimal

solution is a feasible solution that minimizes

n

4) 0- •cj xj
jul

where 0 is called the objective value. That is, a

feasible solution (y 1 ,Y 2 ,... yn) is Optimal if

n n

Zj i yj I'i C X

for all feasible solution vectors (xl,x 2 ,... ,xn).
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The quantity bi, called the node i flow, is the net

flow out of node i. If b is zero, node i is said to be

conservative. If all nodes are conservative, then the

zero vector is a nominal solution, and the network is

conservative. The algorithm for solving the capacitated

network problem requires a nominal solution rather than

a set of node flows. A simple method of determining a

nominal solution is to make the network conservative. This

is done by adjoining one more node, called the supernode,

to the network, together with an arc from each node that

is not conservative to the supernode. The lower capacity

and upper capacity of each additional arc are both set

equal to the net flow out of the node. The zero vector

is then a nominal solution for this augmented network.

Note that there are no sign restrictions on any of

0the quantities c , U, t, Xj, x or b . However, the

problem is trivially infeasible if uj < 'tJ

A simple capacitated network is a capacitated network

with lower capacities (t ) of zero. A general network may

be translated to make it simple. Let

U u -
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-0 0xj - x -L•

•j = j - 1x x

xj x J

for all J. The node constraints above were

n n
* 0a 0 x i=1h2, ... ,m

-J j .i-I j-l

where the right sides to these equations are the constants

n
S0

i aij x-
iil

Substituting the above quantities having a diacritic

tilde into the node constraints, capacity inequalities and

the objective function results in

n n

a j =1 ' ij-+ J I

2) Zxj( + It tJ za4 J-l,2,...,n

3) x + t U3 +L j-l,2,...

J i i|
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n

J-1

By letting

n

i-0
J-1

and

n

J-i

the above becoms

n

J-1

2)xj 0 j-L,2,..

3) xj <uj - , , . ,

n

4) ~ C~ XjJ-1

Since - is at its minimum if and only if o is at its

minimum, the solution of the translated problem is the

translation of the solution of the original problem.
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Other linear, and some non-linear, network and trans-

portation problems are representable as capacitated net-

work problems [ 11. The classical transportation problem

involves a network whose nodes are divided into two classes:

source nodes and destination nodes. If there are s source

nodes and d destination nodes, then there are sd directed

arcs; one arc from each source node to each destination

node. These arcs are uncapacitated, which means that

t- 0 and u +w for each arc J. Each source node has

a net flow out of it, called the supply; and each destina-

tion node has a net flow into it, called the demand. Each

arc has a unit cost which is the same as cj above. This

problem may be solved as a capacitated network problem

by making the upper capacities very large, although special

algorithms are available that solve specifically this prob-

lem. The capacitated transportation problem is as above,

except that (some of) the upper capacities are not in-

finite. If an upper capacity is zero, the corresponding

arc need not be included when solving the capacitated

transportation problem as a capacitated network problem.

* See also Ref. 2, Chap. 14.
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The capacitated network algorithm will solve problems

with non-linear cost functions if the unit cost function

for a given arc is piecewise constant and monotone increasing

(non-decreasing). Let

d(x) - fe(x)dx

where c(x) is the unit cost function, and d(x) is the total

cost as a function of the flow x. Then d(x) must be piece-

wise linear and convex. If the cost function has r "pieces"--

x0 : x 'x c(x) - cl , d(x) - c1x + co

x< x ' x2 , c(x) - d(x) ( d(xX) +c 2 (x-xI)

x2<x < x3, c(x) - c 3  d(x) - d(x 2 ) + c 3 (x-x 2 )

xr-1 < x S xr c(x) = Cr d(x) a d(x rl) + cr(x-xr 1 )

where c is arbitrary and

c c2 3 •.. r,

-- then this arc is represented by r parallel arcs (having

the same source node and sink node) with
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t1, 0 U1 = 1

t 2 =0 u 2  x 2 - x 1

t3 0 U3  x 3 -x 2

tr = 0 ur a xr - Xr-1

and unit costs cl,€cc 3 ,...,cr and nominal flows such

that

r

Zx

i-i

is the nominal flow for the composite arc. The answer

(optimum flow) for the composite arc is

r
•xi

i-1

This representation of the composite arc is not unique,

as can be seen from the converse. Suppose that there are

r parallel arcs with lower capacities tl,t2, r; upper

capacities ulU21...,ur; unit costs cl,C2,...,cr with
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0 0 TheneI c2 c..• and nominal flows xO,x, .. ,x. The

these r arcs are equivalent to the arc with the following

composite unit cost:

c .+ x 2ur + t2 r

c 1 + t2 +" r rx u1 +U 2 + 3

c2 r Ul1 + U 2 +' '+ l + u+Ur r

i-I r i r

I i 1 i+l

C U .. U ~< x u 1 + u 2 +...+U

with lower capacity

r

jo ,

upper capacity

r

uj ,

J-11



-12-

and nominal flow

r

J-1

Thus, for example, the composite arc whose total cost is

the absolute value of the flow has composite unit cost

I -i :-u • x s 0
CWX

+1 0 ,"X < u

and if the lower bound is the negative of the upper bound

u and the nominal flow is x then this arc is equivalent

to the two parallel arcs with:I 0
•I =-u+ U( -c + I 0 .x1  0

• 2 -=" u2  u-a c 2 i=+l x0 =x 0 -2

where a and 0 are arbitrary. Although a and A are arbi-

crary as far as the optimal flow (x 1 + x 2 ) is concerned

(if unique), the value for $ may affect the speed of

solution; while if a is not zero, the objective function

(4) is decreased by the constant 2a.
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A (simple) arc can be reversed in direction by

changing the signs of its uni.t cost atid nominal flow and

reversing the upper and lower capacities and chaqitng

their signs. Denoting a direction revcrsal by a circumfl×x,

this transiormation is

--U

U -C

"-0 0
x -x

Returning to the capacitated network problem in its

translated form (zero lower capacities)--

n
) Z a Xj bi i'l,2,...

J-1

2) 0 !- x I u jml,2,...,n

n

3) minimize Z cj xj

J-l



-14-

-- this problem may be stated as a primal linea&- programming

problem by defining rn slack variables xi+lXn+2,.., "C 2n.

The linear programming problem is then:

n

minimize c Cj xj with xxx, x2 n non-negative, subject to

n

h ajj Xj -bL iil,2.. .,b

J-1

xj + Xn+j U u j-l,2,...,n

Associated vith the linear programming problem solution is

a set of shadow prices (the negative of the dmal variables)

"Vltff'21"Iffm , X 2" n'In" A necessary condition for

optimality is that there exist shadow prices such that

m

C+ _+ aij + + C

J-1 ,2,.. ,r

Xj 0
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m

SeLting cj -c + aij •t:

Moreover, if x(j (r n) is positive (then variable j is

basic), the equality holds:

C +x - 0

i.e., c 0

arid if xj+n is positive (i.e., xj < u ), then

) -j 0,

i.e., C • 0

Hence, if
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0 < x <u

•j - J

c 0O

The quantities rl,•2,..., m are called the node prices.

The quantities c1 ,ý 2 ,..., n are the marginal or reduced

costs. Since only two of the quantities alj~a2j,...,amj

are non-zero--in particular, if i is the source node for

arc J, then aij +I; and if k is the sink node for .rc J,

then akj - -I--

Ej -j + fi " fk

or in a double subscripted arc notation:

mik c Cik + iti "f k

The implicaions

0j O if x > 0

c. 0 if x. < u
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are also sufficient conditions for x1 ,x 2 ,...,xn being an

optimal solution since

n

L i
J-1

J-1 - 1i aij) xj

n m n

- xi vi ~ajj Xji
jii i-i j=i

n m

j-1 i X -i J

cannot be decreased by making a -feasible -change-in the

flow (xj). That is, a feasible solution (xl,x2,...,xn)

has minimum 0 if there exist shadow prices (rl , 2 ,... ,)m)

such that x > 0 implies • • 0 and x < u implies c' • 0.
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11. THE OUT-OF-KILTER ALGORITIH

The method described here is similar to that set forth

in Ref. 3. For each arc, J, let SCJ) be its source node

and T(J] its sink node. Each node, i, has a price, r(L)

or wi" The reduced cost, cj, of arc J, is related to its

unit cost, cji, by

;j - cj + v(S[j)) - v(T[j3).

A set of flows x 1,x 2 ,... ,xn in the arcs is called a nominal

solution if

nI aii = -b )

Jml

where the (aij matrix is such that for each arc J,

(+1 if i - Sj ]

aij- -- if i - T[J]

0 otherwise

and the bi are integers, known as the node flows. A

nominal solution is a feasible solution if, in addition to

Eq. (1),
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SUx u J,2,...,n (2)

where t. and u are given integers, t is known as the

lower capacity, and u is known as the upper capacity. A

feasible solution is an optimal solution if

1 1

is a mininmu over all feasible solutions. A necessary

and sufficient condition that a feasible solution be

optimal is that there exist flr 2 ,... ftm such that the

a calculated from these w i satisfy:

0j • O i f x j < u
ujj

j=l,2,...,n . (3)

cj '0 if x > 't

For any set of nominal x and any ri, let k be the

kilter number of arc J, defined as follows:

This differs from the kilter number defined in
Ref. 3.
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lxj - uji if <0

k = •ax (0, - U3 , •% - xj) if - 0

Ix -• if > 0

or equivalently,

k = max(0, xj -u, " -x, s -x, sgn(sJ)X t gn(BXj)(xj -uj)) .

By comparing ki with Eqs. (2) and (3), it can be seen that

every ki is zero only if the solution is optimal. The value

of ki, never negative, is the amount that arc j is "out-of-

kilter." The amount that the problem is "out-of-kilter" is

n

K- Z
j-l

The network problem could thus be stated as the problem of

finding fi and nominal xj such that K is a minimum. Let

K0 be the minimum such K. If K0 is zero (i.e., the problem

is feasible), it is possible to reduce each k to zero with-

out increasing any of the other kilter numbers in the process.

If the problem is infeasible (K0 # 0), the algorithm described
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in this section may not attain K - Ko, because if K0 > 0

& lower value oi K is sometimes attainable only at the

expense of increasing the kilter numbers of some arcs.

In order to attain K - KO, it is (sctmetimes) necessary to

use a "two-phase" algorithm for which the second phase is

given here. The first phase of this "two-phase'" algorithm

is discussed in Sec. III. For mosit purposes, the algorithm

described in this section is sufficient, since one usually

deals with a feasible problem or a problem with obvious in-

feasibilities.

The algorithm fcr solving a network problem begins

with any node prices and any nominal solution, then proceeds

as follows. An arc is found with a non-zero kilter numnber.

Then a labeling procedure 4.s initiated that attempts to

find a cycle of arcs along which at least one unit of flow

can be pushed without increasing the kilter numbers in any

arc in the cycle. If such a cycle is found, the indicated

flow change is made, thus decreasing the kilter number of

at least one arc. If no cycle is found, a change in the

node prices is made, such that the labeling procedure now

will result in more nodes being labeled. When no more

progress with a particular arc can be made, the algoritlun

looks for another out-of-kilter arc. When all arcs are

either in-kilter or in a condition such that no improvement
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in the kiltet nu:.%be" can be made, the algorithm terminates.

Convergence of the algorithm is proved by showing that the

number of consecutive labeling procedures that can be

attempted without decreasing the total kilter number is

bounded.

For example, arcs 5, 4, 3, and 7 in Fig. 1 form a

cycle, with arc 7 traversed backwards. To indicate that

arc 7 is traversed backwards, it will be denoted as arc -7.

Thus, the aý,ve cycle is 5, 4, 3, -7. In order to define

a cycle in algebraic terms, let el,e 2 ,...,en be numbers

such that

+1 if arc J is traversed forward

ej -1 if arc J is traversed backward

0 if arc J is not traversed

Then these arcs which are traversed form a cycle if

n

za ij ej - 0
j-l

Moreover, this cycle is a simple cycle if no node appears

as either a source node or a sink hode on any arc in the
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cycle more than twice, i.e., if

n
),. t~. e~j - 2 il2. .m
Jul

Thus, it can be been that any amount of flow may be pushed

throuigh a cycle without changing the node constraints.

That is, nominality o) the flow is preserved by replacing

xj by xj + Me for all J and M any constant.

For Fig. 1 the (a ) matrix has the form

1 0 0 0 0 0 0 -1 nodeA

-1 1 -I 0 0 0 -1 0 node B

A 0 -1 1 -1 0 0 0 0 node C

0 0 0 0 1 1 1 1 node D

0 0 0 1 -1 -1 0 0 node E

and for the above example the ej a are 0, 0, 1, 1, 1, 0, -1,

and 0.

For any arc J, we may denote its position in a state_.

diagram (assuming u > C ). Figure 2 shows the 15 possible

combinations of x and Z in relation to the capacities.

A simple cycle may also be defined as a minimal
dependent set of columns of A.
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X > u X > u x > U

(c5) (M)) (y5)
Z<o 0- ;>o 0

X" a u x U X a U

(*4) (94) (y4 )

< X < u < x < uu < x < u

(03) (03) (y 3 )

(*2) (02) (vZ)

;~ <c a-0 Z >0

(•I)(•I)(YI)

Fig. 2--State Diagram

Noe that states cA, 04, 03, $2, and y2 are "in-kilter,"

and that reversing an arc (reversing its direction, its

upper and lower bounds, and changing the signs of Z, x,

u, and t) "reflects" its state through the center box 03.

The arcs in boxes 03, a2, al, 01, and yl need to have their

flows increased to bring them into kilter (see upward point-

ing arrows in Fig. 3); and their kilter numbers are precisely
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the amount of flow increase needed to bring them into

kilter. These arcs will be called sub-kilter arcs.

Similarly, the arcs in states a5, 05, y5, y4, and y3

must have their flows decreased by an amount equal to

their kilter numbers in order to bring them into kilter.

These arcs will be called super-kilter arcs.

x > u

x-u I

x < tt
_ _ _ _ _t, , .. .

C<0 c=0 c>0

Fig. 3--Flow Changes that Decrease the Kilter Numbers
(Indicated by straight arrows. Waved arrows
indicate flow changes that do not change the
kilter number.)

Moreover, an arc in state $2 or 03 may increase its flow

at least one unit without increasing Lts kilter number and
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without decreasing its kilter number since zha kilter

number is zero. These possible fl1 ýereases, together

with possible decreases for the co. finntary states, are

indi:ated by the waved arrows in Fig.

Because of the symnetry of the state diagram, a ril

for increasing the flow in a sub-kilter arc %as its com-

plementary rule in a super-kilter arc. For the sake of

brevity, we assume that the arcs are direCLad whichever

way is the most conyenient for the discus, ion. Bear in

mind that any arc may be reversed if desired.

LABELING PROCEDURE

The nodes are labeled with arc numbers. Begin with

all node labels L(i) at zero. A node is unlabeled if its

label is zero and it is labeled if its label is non-zero.

Find an arc that is out-of-kilter, and assume that it is

super-kilter (its flow must be decreased). This arc is

the target arc, say arc J. Label its source node SJ)

with the label J, i.e., set L(S[Jj) - J. Now find any arc,

J, where one node is labeled and one is not. Assume its

source node, i, is labeled and its sink node, k, is not.

If the flow may be increased without increasing the kilter

number of the arc, then label the sink node of this arc
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with the arc number; i.e., set L(k) - J. Continue looking

for nodes to label until one of two occurrences:

1) The sink nods TtJI of the target arc is labeled,

or

2) No more nodes can be labeled.

These two possibili•ies are known respectively as 1) break-

through and 2) non-breakthrough.

Since the sink node of the target arc was labeled,

there is a path of arcs from the source node of the target

arc to the sink node of the target arc, each of which may

have its flow increased without increasing its kilter

number. This path may be traced backward from the sink

node of the target arc by means of the labels on the nodes

to the source node of the target arc. Then calculate the

maximum amount that the flow can be increased in the (non-

target) arcs in the cycle (or decreased in the target arc)

without increasing the kilter numbers of any of these arcs.

Let this number be c, and make this change in each arc of

the cycle. The kilter number of the problem has now de-

creased by at least as much as the kilter-number change

in the target arc. The kilter numbers for arcs not in

the cycle are unchanged, and the kilter numbers of the

arcs in the cycle are



-28-

k' max(O, k~ t)

where k is the old kilter number and k' is the new kilterJ J

number for the arc J in the cycle. Since we are dealing

with integers, ( is at least 1.

NO.I-BRKAI.T'UWGH

A non-breakthrough occurs if no more nodes can be

labeled and the sink node of the target arc is not labeled.

The nodes are then divided into two classes, labeled and

unlabeled. The set of arcs that have one node labeled

and one node unlabeled will be called the cut set for this

labeling, since the arcs in the cut set cut off the set of

a le n c-be-ed nodes from the set of unlabeled nodes. The target

arc is a member of this cut set. Suppose that all arcs

in the cut set have their source nodes labeled and their

sink nodes unlabeled. (If an arc is labeled corversely,

we may reverse it by the transformation mentioned above

in Sec. I.) Then all of the arcs in the cut set have the

property that their flows cannot be jicreased VS.thout in-

creasing their kilter numbers. As shown in Fig. 3, these

arcs must be in states 05, 05, y5, &4, 04, y4 , y3, or y2 .

That is, the flow in each arc is either at or above its
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upper bound or its reduced cost is positive and its flow

is at or above its lower bound. These states are those

in Fig. 4 for which arrows point to the left. 4
Note that if the prices of the nodes in the unlabeled

set of nodes are increased by any constant, then only the 7

arcs in the cut set will have their reduced cost changed,

and this change in the reduced cost will be precisely the

negative of the change in node prices of the unlabeled

nodes. The leftward pointing arrows in Fig. 4 indicate

the direction of state change that may occur by decreasing

the reduced cost of the arcs in the cut set. Note that

the arrows point toward states that have no greater kilter

numbers than they do themselves.

Let A be the amount that the unlabeled nodes are going

to have their prices raised, i.e., the amount that the re-

duced costs of that arc in the cut set will be decreased.

Denote by Case I the situation that exists if there are

any arcs in the cut set which are in states y2 or y3, i.e.,

with x < u (shown shaded in Fig. 4). Case 2 occtv•s when

all arcs in the cut set have flows at least equal to their

upper capacities.

Consider first Case 1. It is clear that the value of

A must not exceed the value of the redmvceui cost for any arc

| Jl | | | |
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x >u
SUx Ux

0 0 x-4.

4 < x U

u-x 0

x<f
x- 0 0

u-x 4-x 4-x

•<0 •-0 >0

Fig. 4--Kilter Nuabers of the Various States
(Arrows show the states which may have
their reduced costs lowered in a non-
breakthrough cut set.)

in the cut set in state y2 or y3, but that -the reduced

costs of arcs in the cut set in other states may be de-

creased by any amount without increasing their kilter

numbers. Denote as the c..ticl arc that (or one of the)

arc(s) in state y2 or y3 with the lowes t reduced cost.

Let A be the reduced cost of the critical arc and increase

the node prices of all unlabeled nodes by A. If the

critical arc is in state y2, its kilter number will remain

at zero.
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Now consider Case 2. All arcs in the cut set have

flows at least equaling their upper capacities. Lot the

critical are be the arc with the maximum reduced cost.

If the critical arc has a positive reduced cost, let A

be this number and raise the prices of the unlabeled nodes

by A. This causes every arc that had a positive reduced

cost to now have a non-positive reduced cost and to have

its kilter number reduced from x - 4 to x - u. On the

other hand, if the critical arc has a non-positive reduced

cost, then all arcs in the cut set have a non-positive

reduced cost; and the kilter number of the target arc can-

not be reduced. Hence, the problem is infeasible. The

cut set is then a cut in the classical sense in that the

_- target -arc- has__a-f-l abov iet-s--upper-capacittyandt tw only

way to reduce the flow in the target arc is to increase the

flow in some other arc(s) in the cut set which has a flow

at least equaling its upper capacities. If the flow in

the target arc exceeds its upper capacity, the problem is

infeasible (in Case 2) regardless of the sign of the re-

duced cost of the critical arc, but some improvement of

the kilter numbers occurs if the reduced cost of the

critical arc is positive.

g j J n J n ;
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In any event, for Case 2, after the node prices have

been changed, the kilter number of the target arc has been

minimized (to zero if its flow was at the upper capacity)

and no more labelings with this arc as the target arc

should be attempted. In Case 1, the labeling procedures

should now be continued, keeping the labels intact for the

nodes already labeled. At least one more node can be

labeled, in particular, the sink node of the critical arc.

Hence, since there are m nodes, at most m - 1 consecutive

Case I non-breakthroughs can occur with the same target

arc. If the problem is feasible, the kilter number for

the problem will be decreased after at most m labelings.

Hence, it is seen that the algorithm converges.
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j II1. RELATED ALGOMTIUS

STHE II IDMLITY ALGORITHM

For each arc, J, of the network, defir, qj, the

infeasibility number:

qj aMax(O, xj - uj, Lj -xj) ,

and Q, the total infeasibility:

nZ" qj•

J-

It is clear that qj is the amount (if any) that the flow

violates the upper or lower capacities imposed on the arc

J. It ins also clear that the kilter number, K, of the

problem can be reduced to the value of Q. and that if Q

is at its mini==z value, then K can be reduced to its

miniuwm value (which is K - Q) using the out-of-kilter

algoritim. If Q is not at its minimun value, and if the

problem is infeasible, then K may not be reduced to its

minim=m value by the out-of-kLlter algorithm. For example,

the network of Fig. 5 has initially zero flow in each of

its three arcs, the upper capacity is equal to the lower

S
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A

(1 1) (010)

B (1,1) C

Fig. 5--Example Network (Numbers in parenthesis
are the lower and upper capacities.)

capacity for each arc, and the capacity for arc (A.3) is 1,

___ _ lo-arc_(I,C) A. Jandfor _rc"C 1A)s_. 4 _ Arc(C,A) ia

"in-kilte'," while the others are not; but any change in

the flow will cause arc (CA) to go "out-of-kilter," hence,

nothing can be done to this network by the =tt-of-kilter

algorithm. Thus, K reamins at 2, despite the fact that

the minimum K is 1. This minim=n is obtained by forcing

a flow of 1 into each arc, thereby increasing the kilter

number (which in this case is also the infeasibility

number) of arc (CA) to I and decreasing the kilter numbers

of the other two arcs to zero. The attaitment of the
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miniium K can also depend on the order in vhich arcs are

chosen to be brought into kilter and on the order in which

nodes are labeled. The network in Fig. 6 is an example in

which either of these possibi•ities can occur.

A B

(1,1)(11,1) (0,1) •

C D

Fig. 6--Another Example of an Lnfeasib).e N-etwork

An alSorithm will nov be developed to solve the prob-

lem of minimizing Q for a network. In order to develop

this algorittm, we use the artifice of replacing each arc

of the network by three new arcs. Suppose an arc has

source node A, sink node B, lower capacity t, upper

capacity u, and nominal flow x. The three arcs that re-

place this arc (see Fig. 7), each have source node A and

6
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10,)T

A B

Arc +0

Fig. 7--Artificial Arcs Used in Infeasibility
Algorithm

sink node B, and are denoted as arc -1, arc 0, and arc +1.

These arcs have the following properties:

Unit Lower Upper
ArC Cost Capacity CAPacity

arc -1 c" -1 -I a -a u" a 0 x" - min(O, x-)

arc 0 c 0 0  I0tO xO-WU 0 (4, min(u,x))

arc +l c+- +1 4- 0 0 -+4 x + max(O, x- u)

Note that x x" + x0 + X+, and that the flows are

feasible in each arc. Hence, this new problem is feasible

and its total cost is precisely Q of the original problem.
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Let y, VY, and y be the reduced costs for arcs -1, 0, and

+I, respectively, so th-.t

V 0 + VA "1
v~O4 . A B3

+ + V + A -*3 y + I+ .

It is not necessary to deal with node prices for this algo-

rithm, but only with the reduced costs y, which for each
- +

arc are initially zero. Hence y - -1 and y - +1 initially.

ym+ ust remain non-negative, since it could become negative

only if the flow in arc +1 were at its upper bound, which

would imply that Q is infinite. Similarly, I, wast remain

non-positive. Thus,

+y -y + 1 9 0,

or

y.:l

y a-.,

m m i im m m m m m mm m i
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i.e., y f. 1. But y will take on only integral values;

hence, y may only be 0 or *1. Arc -1 will have non-zero

(negative) flow only if x < t, and its flow may be decreased

(made more negative) only if y' ." 0, i.e., (since y must be

non-positive) , 0 or y - 1. Similarly, the flow may be

increased in arc +1 only if y - -1; and arc +1 will have

non-zero flow only if x > u.

The above discussion shows that if node A is labeled

then node B can be labeled:

I) via arc -1 if x < 4;

2) via arc 0 if x <u and y 1;

3) via arc +1 if 7 - -1.

The state diagram of this composite arc is shown in

Fig. 8. Note that tho states that are impossible for y 0 0

are crossed out. If a non-breakthrough occurs, then for each

composite arc that has 4ts source node labeled and its sink

node unlabeled, either [V - 0 and x a u) or fy - +1 and

x - 0]. Increasing the node prices (which are not being

computed) of the unlabeled nodes by +1 is equivalent to

decreasing y of this composite arc by 1 (or increasing

y by 1 if the arc is labeled conversely). This moves

the state of the arc one box to the left, and hence to

a labelable state (unless x - 4 - u). Moreover, this
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x ><u

xm

x<

" - '- 0 Y- I

Fig. 8--Arc States in which Flow may be Increased
in the Infeasibility Algorithm

change of the y's puts the target arc into kilter, since

a composite arc is in kilter if either v A 0 or t. s x ! n.

Hence, the problem of minimizing Q may be solved by

the out-of-kilter algorithm by replacing each arc by three

arcs with appropriate bounds and costs. But these com-

posite arcs were nerely an artifice used for determining

a new algorithm based on the out-of-kilter method. Now,

discarding the composite arcs, this method may be

sumnarized.

rI
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Begin with numbers v1 ,v2 ,...')n all zero. Look for

4in arc, J, with yj - 0, and either x3 > U or x. <

If no such arc exists, Q has been minimized and we are done.

When an arc is found with these properties, label its source

node if x3 > uj and its sink node if xi < Ij, Then begin

a labeling procedure that terminates if the other node of

arc J is labeled or if no more nodes can be labeled.

If arc j has its source node labeled and its sink

node unlabeled, the sink node can be labeled if

1) y 0 and xj < Up

or

2) /j--1,

or

3) xJ < tJ.

If the sink node is labeled and the source node unlabeled,

the source node can be labeled if

1) y -0 and x >L -t,

or

2) Yj -+1,

or

3) xj > Uj
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When the labeling procedure results in a breakthrough

(i.e., both nodes of arc J have been labeled), the cycle

is determined, and c is calculated and added to those arcs

labeled (forward) from source to sink and subtracted from

those arcs labeled (backward) from sink to source. c is

the minimum of

1) u - xj if Yj - 0 and arc j labeled forward,

2) xj - L if -Y -0 and arc j labeled backward,

3) 4 - xj if Yj - +1 and arc j labeled forward,

4) Xj - uj if Yj 0 -1 and a-- j labeled backward

for all arcs in the cycle. If an arc, j, is labeled for-

ward and yj - -1 or labeled backward and yj - +1, then

this arc imposes no limit on c. All arcs with yj - 0 do

impose a limit, and arc J is one of these. After the r

change in the cycle, xj may or may not satisfy xj 1 zI

and xj % u.,. If it does satisfy these conditions, then

look for another arc to label. If it does not satisfy

these conditions, begin the labeling procedure anew with

arc J.

When the labeling procedure results in a non-break-

through, subtract 1 from yj of all arcs with the source

node labeled and the sink node unlabeled, and add 1 to yj

for all arcs with the source node unlabeled and the sink

m s m m m m mm m
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node labeled. The other arcs do not have a change made

in Y In particular, arc 3 has one node labeled and

one unlabeled; hence, now yj - *l. Thus, another arc must

be found to begin the labeling procedure again.

Eventually, every arc will have either yj 0 or

t 6 X 5 UJ. The infeasibility of the flow has then been

minimized. If y 0, arc j is not necessarily infeasible,

but all arcs with non-zero y can be thought of as part of

a cut set for all of the infeasible arcs.

THE FEASIBILITY ALGORITHI

The feasibility algorithm is similar to the infeasi-

bility algorithm, except that one is not interested in

minimizing the infeasibility but only in finding a feasible

flow if it exists. If the problem is feasible, no non-

breakthroughs will occur in the infeasibility algorithm.

Hence, the reduced costs, y, will never be made non-zero.

The labeling procedure for the feasibility algorithm

is as follows. If the source node of arc j is labeled and

the sink node is unlabeled, then the sink node can be

labeled if xj < uj. If the sink node is labeled and the

source node is unlabeled, then the source node can be

labeled if xj > It. Only arcs which are infeasible are

chosen as target arcs. If a non-breakthrough occurs, the
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problem in infeasible. Otherwise, only breakthroughs will

occur, and the problem will be feasible when all arcs are

made feasible. For this algorithm, no y, are calculated.

Hence, it is simpler computationally than the infeasibility

algorithm.

T-PHASC

Either the infeasibility algorithm or the feasibility

algorithm may be used as the first phase of a two-phase

algorithm. Then the second phase is the out-of-kilter

algorithm described in Sec. 11. If phase I causes the

network to be feasible, certain tests in the out-of-kilter

algorithm become unnecessary. In tha labeling procedure,

if the source node of arc j is labeled and the sink node

-is -•labeled, the- sink node can be labeled if c 0 and

xj < uj. The additional case, that x < and c, > 0,

cannot occur in this algorithm and need not be tested.

Similarly, in the non-breakthrough procedure, the tests

for x > u can be omitted.
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IV. CO•Pt ATIO"L Memo

LABELING

The method of labeling nodes described in Sec. 11

was that of looking for an arc with one node labeled and

one node unlabeled and then determining whether the un-

labeled node could be labeled. A method has evolved that

requires less searching for arcs with exactly one node

labeled. The idea of this method is to set up what is

called a scan list. Associated with the scan list are

two indices: a, the length of the scan list, and p, the

position of the scanner. Denote the scan list itself by

R(l),R(2),...,t(s). The procedure begins with p - 1,

a - 1, and R(l) - node which is the labeling origin. Then

look at (i.e., scan) each arc for which the node R(p) is

its source node or its sink node. If the other node of

any of these arcs can be labeled, do so, increase s by 1

and set R(s) to the node just labeled. If R(s) is the

terminal node, then the labeling procedure is done and a

breakthrough has occurred. When all of the arcs joining

node R(p) have been scanned and no breakthrough has occurred,

increase p by 1, then repeat the process for the new node

R(p). If p > a, then the scan list has been exhausted

and a non-breakthrough has occurred.
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t When this procedure is used, each arc can be "looked

! at" at most twice: once from each of its nodes. But. i.n

order for this method to be more efficient than one that

merely searches for arcs with one node labeled, lists must

be set up of the arcs that join each particular node.

LIST STW•CUR

Let there be n arcs such that the j th arc has source

node S[J ) and sink node Ttj). Suppose that there are m

nodes numbered from 1 through m and, therefore, that S and

T have values in this range. Assuming that the arcs are

in no particular order, it is necessary to set up four

lists, say U, V, g, and h, where U and V are arrays of

length m+l and g and h are of length n. Let a be the

number of arcs that have node i as their source node and

let Ti be the number of arcs that have node i as their

sink node. Either ai or ri, but not both, may be zero.

Then U and V are defined recursively:

U 1-UlUI1

Ui+ U +oi i-a,2,..., n

and
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V 1 1

V Vi +

I. V~~~i+l " Vt+i •,,.,

Now, let P " i for i-1,2,... ,m. For each J from I

through n, let i a S[j), gtpi) - J, and then increase Pi

by 1. When this is done, gCU I through gCUi+1 -1) is a

list of the arcs with node i as the source node. The

same procedure is repeated for V and h with the sink nodes,

giving a list of the arcs with the same sink node.

The ALGOL procedure in the Appendix uses the above

lists. This procedure executes the out-of-kilter algorithm

as described in Sec. II. This may be compared with the

simpler program in Ref. 4. The symbols used in this pro-

gram are substantially the same as the ones given at the

beginning (p. xi) and used throughout this Miorandum.

Space may be saved by arranging the arcs so that the

source nodes are in order. Then the list g is unnecessary

since g(j) w J. This procedure is used in the FORTRAN

program of Ref. 5.

More complicated list structures may be needed if

this procedure must store data on such peripheral devices

as disks. In this event, it may be useful to double each
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arc so that it has its forward and backward representa-

tions in the lists. Then only one "disk file" need be

retrieved for scanning each node.

TENTATIVE CONCLUSIONS

Several experiments were done with the methods do-

scribed above. Since these experiments were not at all

extensive, and since the results depend greatly on the

type of problem and machine software, these conclusions

should not be regarded as final.

Several problems were solved using the algorithm

described in Ref. 4 and the algorithm given in the Appendix.

The largest problem solved had 1530 arcs. This problem

was run on a relatively slow machine (IBM 360 Model 40)

with the result that the program with the list structure

described above ran five times as fast as the program with-

out this list structure (30 min vs. 2.5 hr). This time

ratio should increase on larger problems and decrease on

smaller problems. The faster problem solution using the

program with the list structure must be balanced against

the greater storage capacity needed for the lists.

Several tests were made employing a two-phase algo-

rithm, with the first phase being the feasibility algorithm

described in Sec. III. This modification increased the

It



-48-

number of calculations, and hence cannot be recommended.

In fact, Fulkerson's [3) original description of the

algorithtm seems to be the most efficient, even though

certain Case 2 non-breakthrough calculations were not

made. Therefore, some of these calculations are not

included in the appended ALGOL procedure.
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Appendix

ALGOL PROCEDURE

This ALGOL procedure should be self-explanatory since

it uses the symbols appearing in the body of this Meemo-

randum. Upper and lower case symbols are distinct. The

symbol "pi" corresponds to the symbol ff in the text, "out-

kilter" is the number of arcs that could not be brought

into kilter by the procedure, and "refnode" is an arbitrary

node whose w value is not changed by the procedure. This

procedure was not checked in the ALGOL language; hence,

all errors may not have been detected.

Procedure network (m,n,S,T,c,u,A,,x,pi,refnode outkilter)

integer m,nrefnode ,outkilter;

integer array S,T,c,u,t,x,pi;

begin integler array U,V[l:m+2jg,h[l:n',L,RCl:mj;

integer J,aa,term,laborg,origin,i,j p,k,s,a,kpKq,eps,epsl;

Boolean breakthru;

outkilter:- 0;

1o to setup;

endsetup: for j:, 1 ste I until n do

c(j) : c(j)+pi(SCj 1)-pi(Trj 1);
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comment look for an out-of-kilter arc;

search: J:- 1; a&:- 0; breakthru:- true;

mainlp: if x(J) <(J)vc(J)<OAx(J) <u(J) then go to fd;

if x(J)>u(J)vc(J)>&Ix(J)>•,(J) theIn o to bd;

return: J:- J+l;

if J~n then go to mainlp;

for J:- 1 step 1 until n do

c(J) :- c(j)-pi(S[j ])+pi(T[J1) ; Igo to endn;

fd: term:- SCJI; origin:- T[J]; laborg:- J;

&o to prelpb;

bd: term:- T[J]; origin:- S[J]; laborg:- -J;

prelab: R(1):- origin; &o to label;

comment count arcs beginning and ending at nodes;

setiup: for i:- 3 step 1 until m + 2 do

b U(i) :- 0; V(i):- 0 end;

for J:- 1 step 1 until n do

begin U(S[JI + 2):- U(S[JI + 2) + 1;

V(T[JI + 2):- V(T[jI + 2) + 1 end;

comment cumulate counts;

U(1):- 1; U(2):- I;

V(1):- 1; V(2):- 1;

for i:- 3 step 1 until m + 1 do
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begin o(i):- U(i) + U(i-I);

V(i):- V(i) + V(i-l) end;

comment set up arc locator lists;

for i:- 1 step I until n do

begin gEu(S[J1 + 1)':- j;

h[V(T[Oj + 1)]:- J;

U(S[j] + 1):- U(SCJ1 + 1) + 1;

V(T[JI + 1):- V(T[jl + 1) + 1

end;

go to endsetup;

label: if -ibreakthruAJ-aa then go to label2;

comment zero out labels;

for i:- 1 step 1 until n do L(i): - 0;

s:- 1;

label2: p:- 1; aa:- J; breakthru:= false; L(origin):- laborg;

comment try to label the forward arcs;

label3: i:, R(p);

for a:- U(i) L 1 until U(i+l)-l do begin

J:= gia]; k:- T[j];

if L(k)OACX(j)<IL(J)VC(J)OAX(j)<U(J)I then

begin L(k):= J; s:- s+l; R(s):-, k end; eand;

coment try to label the backward arcs;



for a:-n VWi iL.2. 1 until V(i+l)-I. do begin

if L(k)mOAtX(J)>u(J)VC(J)ŽOAX(J)>,t(j) I then

begin L(k):- -J; s:- s+l; R(s):- k end; end;

[ ~coimment test for terminal labeled;

if L(term)0O then &o to break;

p:- p+l;

commIent if scan list exhausted, non-breakthru;

if p~s then yo. to nobreak;

go to label3;

commrtent find flow increment in cycle;

break: eps:- 999999999; breakthru:- true;

Kt:- term;

j:-I

breakloop: Kq:-a L(Kt); kp:- abs(Kq);

if Kq>O then &o to forwardbreak; Kt:- T(kp);

if c(kp)zO the go to lowerbreak;

tL. o upperhreak;

forwardbreak: Kt:w SkPII

if c(kp)>Q the j~ t lowerbreak;

upperbreak: eps:- min(eps,abs(u(lV)-x(kp)));

go to2 endbreakloop;



lowerbreak: eps:- min~eps.;absQ/(kp)-x(kp)));

endbreakloop: R(j):- Kq;

if Kt -term then &o trn increment;

J:- J+).; &o tq breakloop;

ccmmient incretwnt U'Low;

increment: for i:A 1 stee 1 iinti1 j OP

if R(i)>O then

x(R(i)):- x(R(i)) + cps

else x(-R(i)):- x(-R(i)) - eps;

&o to mainip;

commient find delta for non4-'reakthru;

nobreak: epsl:u- q99999999;

for J:-l 1 2L2Iuntil ndo

if L(S[j J)WOL(T(Jj )mOAx(j)<u(A)

VL(S~jI) -OAL(T[j ])OOAX(J)>t(j)

then epsi :- min(eps,abs(c(j)));

comment test for case 2;

eps:- epsi;

if eps0999999999 then &o to change;

if c(J)mOvsign(L(origin))-sign(c(J))

theýn go to infeas;

cps-- abs(c(J));
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coument change reduced costs;

change: for J:- 1 It until n do

if L(S[J))-OAL(T[j])0O

then c(j):- c(j) + eps also

if L(S[J))#OAL(T(jI)-O

then c(j):- c(j) - eps;

comment change node prices;

if L(refnode)0O then

for i:- 1 st 1 until m do begin

If L(i)uO then pi(i):- pi(i) + eps end else

for 1:- 1 s 1 until m do

if L(i)#O then pi(i):- pi(i) - eps;

if cps-epslvx(J)-t(J)vx(J)-u(J) then

go Lo main loop;

infeas: outkilter:- outkilter + 1; go to return;

endn: end network
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